
1988 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 4, DECEMBER 2020

Exploring Network-Wide Flow
Data With Flowyager

Said Jawad Saidi , Aniss Maghsoudlou , Damien Foucard, Georgios Smaragdakis ,
Ingmar Poese, and Anja Feldmann

Abstract—Many network operations, ranging from attack
investigation and mitigation to traffic management, require
answering network-wide flow queries in seconds. Although
flow records are collected at each router, using available traffic
capture utilities, querying the resulting datasets from hundreds
of routers across sites and over time, remains a significant
challenge due to the sheer traffic volume and distributed nature
of flow records. In this article, we investigate how to improve
the response time for a priori unknown network-wide queries. We
present Flowyager, a system that is built on top of existing traffic
capture utilities. Flowyager generates and analyzes tree data
structures, that we call Flowtrees, which are succinct summaries
of the raw flow data available by capture utilities. Flowtrees
are self-adjusted data structures that drastically reduce space
and transfer requirements, by 75% to 95%, compared to raw
flow records. Flowyager manages the storage and transfers of
Flowtrees, supports Flowtree operators, and provides a struc-
tured query language for answering flow queries across sites and
time periods. By deploying a Flowyager prototype at both a large
Internet Exchange Point and a Tier-1 Internet Service Provider,
we showcase its capabilities for networks with hundreds of
router interfaces. Our results show that the query response time
can be reduced by an order of magnitude when compared with
alternative data analytics platforms. Thus, Flowyager enables
interactive network-wide queries and offers unprecedented
drill-down capabilities to, e.g., identify DDoS culprits, pinpoint
the involved sites, and determine the length of the attack.

Index Terms—Network data summarization, network monitor-
ing, network-wide traffic analytics.

Manuscript received April 30, 2020; revised September 24, 2020; accepted
October 15, 2020. Date of publication October 27, 2020; date of current ver-
sion December 9, 2020. This work was supported in part by the European Re-
search Council (ERC) Starting Grant ResolutioNet (ERC- StG-679158) and
by the German Ministry for Education and Research (BMBF) as BIFOLD -
Berlin Institute for the Foun- dations of Learning and Data (01IS18025A,
01IS18037A). The associate editor coordinating the review of this arti-
cle and approving it for publication was T. Inoue. (Corresponding author:
Said Jawad Saidi.)

Said Jawad Saidi and Aniss Maghsoudlou are with the Internet Architecture
Research Group, Max Planck Institute for Informatics, 66123 Saarbrücken,
Germany (e-mail: jsaidi@mpi-inf.mpg.de).

Damien Foucard is with the Open Distributed Systems Research Group,
TU Berlin, 10623 Berlin, Germany.

Georgios Smaragdakis is with the Internet Architecture Research Group,
Max Planck Institute for Informatics, 66123 Saarbrücken, Germany, and also
with the Department of IMA, Faculty IV-Electric Engineering and Computer
Science, TU Berlin, 10623 Berlin, Germany.

Ingmar Poese is with BENOCS GmbH, 10553 Berlin, Germany.
Anja Feldmann is with the Internet Architecture Research Group, Max

Planck Institute for Informatics, 66123 Saarbrücken, Germany, and also with
the Saarland Informatics Campus, Saarland University, 66123 Saarbrücken,
Germany.

Digital Object Identifier 10.1109/TNSM.2020.3034278

I. INTRODUCTION

NETWORK operators have to continuously keep track of
the activity in their networks over both long and short time

windows. Over long time windows, e.g., days or hours, network
operators are interested in provisioning network capacity or
making informed peering decisions. Over short time windows,
e.g., minutes, network operators would like to identify and
rectify unusual events, e.g., attacks or network disruptions. To
that end, they typically rely on either flow-level or packet-level
captures from routers within their network [1]. For a summary
of tasks and how previous work tackled them see Table I.

Flow captures include 5-features: source (src) and destination
(dst) IP addresses, port numbers, protocol ID–to summarize traf-
fic information per flow–Packet and byte count [2], [3]. Packet
captures gather packet headers [4], [5], [6], [7]. Unfortunately,
gathering data for every packet is often too expensive at high-
speed links. Thus, flow-level and packet-level capture tools
rely on sampling packets, e.g., 1 of every 10k packets [8].

Among the most popular capture tools are NetFlow [9],
IPFIX [10], sFlow [11], and libpcap [7]. All major router and
high-end switch vendors (Cisco, Juniper, Alcatel-Lucent, and
Huawei) offer flow capture capabilities [9], [10], [11]1 in their
commodity as well as high-end products.2

Recently, query-driven solutions, e.g., Sonata [16],
Stroboscope [17], and Marple [18], made it possible to
compile specific queries into telemetry programs and collect
data from all queried network nodes. These solutions provide
exceptional flexibility, but they require the network operator
to know a priori (i) the nature of the network problem,
(ii) the network-related query that has to be compiled into
telemetry programs, (iii) the network node where the teleme-
try capability is available, and (iv) the node where the query
has to be executed. Unfortunately, in large networks with
hundreds of interfaces, operational issues arise at different
parts of the network and the queries that are required are
not known in advance. In many cases, network engineers
have to try different queries to locate the source and type of
problem interactively. Thus, it takes a prohibitively large time

1NetFlow is a Cisco trademark, so other vendors market the NetFlow sup-
port with other names, e.g., Juniper Networks use the trademark Jflow or
cflowd.

2NetFlow and IPFIX capabilities are available in router series, e.g., Cisco
IOS-XR, IOS and Catalyst router [12], Juniper M-, T-, and MX-series
routers [13], Alcatel-Lucent 7750SR [14], Huawei NE-series routers [15], and
switches, e.g., Cisco (5600, 7000, 7700), Enterasysthese (S- and N-series), and
servers, e.g., VMware (vSphere 5.x).

1932-4537 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Max-Planck-Institut fuer Informatik    . Downloaded on October 07,2022 at 10:35:38 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-8846-8905
https://orcid.org/0000-0003-2772-6648
https://orcid.org/0000-0002-4127-3617


SAIDI et al.: EXPLORING NETWORK-WIDE FLOW DATA WITH FLOWYAGER 1989

TABLE I
TYPICAL NETWORK QUERIES AND SYSTEMS TO TACKLE THEM.

CURRENTLY, NO SYSTEM ADDRESSES ALL OF THEM

to compile such queries into telemetry programs. Another
obstacle toward adopting such solutions is that this requires
hardware investments by the network operator. For example,
Marple relies on P4-programmable software switches that are
not yet widely adopted by Internet Exchange Points (IXP)
operators and Internet Service Providers (ISP).

To the best of our knowledge, there is at this point in time no
system that offers answers to a priori unknown network-wide
queries in a scalable interactive manner, even though the neces-
sary raw network data, e.g., via NetFlow [5], [12], sFlow [11],
IPFIX [10], or libpcap [7] is collected by most operators.

From an operational point of view, fast exploration of large
volumes of network flows over time and across sites is useful
to answer a range of operational queries (see Table I). Yet,
network operators need to be able to tackle such tasks in a
unified and systematic way with reliable and scalable tools.
Existing data analytics systems, e.g., Spark [19], are not tai-
lored to analyze network data when it comes to scalability,
interactivity, handling of geo-distributed data, or answering a
priori unknown network-wide queries.

In this article, we design, implement and evaluate a system,
Flowyager, that is able to answer a priori unknown network-
wide queries with fast response, and, thus, enables interactive
exploration of network data across network sites and over time.
The architecture of our system is built around the following
requirements:

(1) Scalability: The system should grow with the network
size, the number of data sources, and the analysis require-
ments. Hereby, it should enable distributed deployment and
not require all data to be transferred to a central location.

(2) Reuse of existing flow captures: As it takes significant
effort to deploy novel network capture utilities, the system
should work on top of existing, widely deployed, and sup-
ported flow capture capabilities, such as NetFlow, sFlow,
IPFIX, or libpcap. In high-speed links, these tools typically
sample packets [8] to provide summaries of flow activity.

(3) Support of interactive and ad-hoc queries: To easily ex-
plore network data, the system needs to offer an interface
that is flexible and interactive (meaning response times in
the order of seconds) so as to improve user productivity and
enable drill-down capabilities. Possible queries vary and a

system should not only focus on batch-style known queries but
also enable quick ad-hoc exploration of the data, i.e., answer
queries that are not known in advance, and allow for follow-up
queries. Answering network-wide queries should not require
custom code or scripting as network operators usually nei-
ther have the required time nor the resources (e.g., storage or
computing). The goal is to reduce the response time of queries
from hours or dozens of minutes to seconds and, thus, enable
interactive and drill-down queries.

(4) Support of queries across network sites and over time:
Most queries are not just for some specific time period or
network site. Rather, they correlate data spanning multiple
periods, across network sites, and at different granularities,
e.g., per site, region, time of day, and event. The system
should be able to collect, index, and store summary data across
multiple sites and over time.

Although most networks gather raw flow data, answering
network-wide queries is difficult due to: (a) the distributed
nature of data collection (per interface and router) at different
locations, i.e., at multiple border and/or backbone routers, (b)
the massive and ever-increasing size of the flow data (despite
sampling) incurring an excessive cost to store, transfer, and
analyze flow data–indeed, it often has to be deleted after some
time to be able to store more recent data, and (c) the inter-
national footprint with the requirement to comply with local
legislation which may prohibit the transfer of raw data.

To achieve the above, we need data structures that generate
succinct and space-efficient summaries, as well as indexing
of network flow captures that are light (easy to transfer), can
be analyzed locally, and enable answering interactive a priori
unknown network-wide queries. These data structures should
be used to accurately and quickly answer queries and tackle
network management tasks that involve multiple sites and/or
span multiple periods in a user-friendly and unified way.

The contributions of our paper are:
• We design, deploy and evaluate Flowyager, a system

built on top of existing voluminous network captures,
that enables interactive data exploration. We show that
with Flowyager the query response time for network-wide
queries can be reduced from hours or minutes to seconds.

• We propose a lightweight self-adjusting data structure,
Flowtree, that inherits the performance of previously
proposed hierarchical heavy hitter structures for comput-
ing flow summaries. Flowtree summarizes elephants as
well as mice flows and supports multiple operators, such
as merge, compress, and diff, to summarize information
across multiple sites and time periods.

• We propose an SQL-inspired language, FlowQL, which
provides a unified interface to ask arbitrary ad-hoc queries
about flow captures, including drill-down queries.

• We show that when answering a wide range of queries,
Flowyager significantly outperforms the state of the art
data analytics systems, namely, ClickHouse, and Spark.

• We share our experience of rolling out Flowyager at differ-
entoperationalenvironments,namelyalargeIXPandatier-1
ISP, and showcase how to tackle various network manage-
ment tasks. We will make Flowyager and its code available
for non-commercial use under the following link [48].

Authorized licensed use limited to: Max-Planck-Institut fuer Informatik    . Downloaded on October 07,2022 at 10:35:38 UTC from IEEE Xplore.  Restrictions apply. 



1990 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 4, DECEMBER 2020

II. STATE OF THE ART

Existing network analytics systems, such as [49], [50], typ-
ically transfer the raw traces to a centralized data warehouse
for archiving and processing. However, transferring the raw
traces is increasingly expensive due to the data volume—
e.g., Terabytes of flow data generated in a single day can
be out of sync, and all need to be transferred. Moreover,
additional constraints are posed by national regulations when
networks operate at regions under different jurisdictions: for
example, transferring data that includes user identifiers, e.g., IP
addresses allocated to EU citizens, without their consent, vio-
lates the EU General Data Protection Regulation (GDPR) [51].
Fines are steep, namely up to 4% of worldwide turnover or
20 million Euros, whichever is higher.

Network Monitoring Systems: Alternative proposals sug-
gest to enable powerful custom data collection per query
and realize this by combining traffic mirroring and deter-
ministic packet sampling. These include query-based mon-
itoring such as Stroboscope [17], network troubleshooting
using mirroring [52], [53], analysis of in-network packet
traces [27], [54], as well as monitoring links on-demand as
shown by Gigascope [20], pruning-based solutions such as
Cheetah [55] or other SDN-based monitoring, such as [56] or
PRECISION [57]. The main disadvantage of these systems is
that the target flows, sites, and periods of interest need to be
known in advance, which is often not the case in practice.

Streaming network telemetry systems, from more classic
approaches such as A-GAP [37] to the numerous modern solu-
tions, such as Sonata [16], FlowBlaze [58] or Poseidon [59],
build on the same ideas but require programmability from
network devices, e.g., P4 switches or FPGA. These systems
assume that users can predefine what is relevant and optimize
the monitoring accordingly, often following a top-down
approach [60]. As a consequence, if, potentially, all flows are
of interest, these systems can degrade to “standard” flow mon-
itoring which for large networks is challenging. Marple [18]
adds flexibility to network-wide monitoring but requires P4-
programmable capabilities that have not been yet widely
adopted in wide-area networks by ISP and IXP operators.

Big Data Analytics Systems: Some operators directly
feed their flow captures into state-of-the-art analyt-
ics systems, often based on the map-reduce principle,
e.g., Spark [19] and Hadoop [61], or column-based
databases, e.g., ClickHouse [62]. This has scalabil-
ity issues. Thus, recently proposed big data analytic
systems—see [63], [64], [65], [66], [67] as well as [68] and
references within—suggest to use a distributed setup whereby
data is locally preprocessed, e.g., by aggregation or sampling,
and then centrally analyzed. This reduces the need to transfer
the raw data. Note that none of the above focuses on network
management tasks. Thus, their programming interface follows
the map and reduce paradigm which differs from network
operation tasks. Even though such systems can provide
significant speedup for tasks that can be parallelized, not
all network management tasks may benefit. Like Flowyager,
such big data analytics systems are flexible w.r.t. the queries
supported. Yet, unlike Flowyager, they typically are not

compatible with existing network monitoring software, do
not fully support principled aggregation (over time, space
and flows), do not offer any history, and do not give any
performance (accuracy or runtime) guarantees.

Data Summaries–Heavy Hitters: Previous work on com-
puting network summaries has focused on how to efficiently
compute heavy hitters (HH) [4], [5], [69], [70] and hierarchical
heavy hitters (HHH) [23], [71], [72] using minimal resources
to be able to compute them on the router itself. These solutions
provide an online summary of the (hierarchical) heavy hitters
for a fixed observation window, at one location, and only on
a given subset of the data. In contrast, to answer interactive
network management queries (see Table I), we need sum-
maries over different subsets of the data, per site/router and
across sites/routers, and at many different time granularities,
from minutes to days — or even months.

Heavy hitters change as data is aggregated: as more data
comes in, popularities increase overall. Consequently, the
threshold to be considered a heavy hitter should be raised.
In contrast, some HHH data structures, e.g., [23] use a sin-
gle manually defined absolute threshold (e.g., frequency above
1000) to characterize heavy hitters, resulting in a data structure
unable to adapt its definition of heavy hitter as the underlying
data changes. Flowyager builds upon heavy hitter data struc-
tures by adding support for aggregation (over time, location,
and flows) and adding flexibility w.r.t. the supported queries.

Data Summaries–Sketches: Another approach for comput-
ing network summaries are sketches, e.g., [34], [73], [74] as
well as systems that utilize sketches for network monitoring
and debugging [25], [35], [75], [76], [77]. The capabilities
of sketches include counting, top-K, HH, as well as HHH.
They are highly space-efficient data structures that support
many types of queries. Yet, most do not support range queries,
e.g., queries that involve a range of sites and/or time periods.
Moreover, extracting an estimate from sketches is often not
time-efficient. We note that the focus of sketches is similar
to that of HHH, i.e., computing online summaries for a fixed
observation window with minimal resources. Flowyager could
be built upon sketches but we decided to build upon a HHH
data structure.

III. FLOWYAGER ARCHITECTURE

To address the challenges outlined in the introduction, we
build a scalable distributed network data analysis architec-
ture, Flowyager. Its input is existing per-interface network flow
captures, either flow summaries—reporting on packet, byte,
or flow counts per 5-tuple (src/dst IP address, src/dst port,
protocol)—or packet-level summaries (e.g., trace sample). We
emphasize that we do not propose yet another NetFlow. Its
output is network reports including packet, byte, or flow
counts across network sites and time periods. Prime users,
i.e., network operators, can access the data via FlowQL, an
SQL-inspired query language that returns results in seconds
and, thus, enables interactive ad-hoc queries with drill-down
capabilities. For a comparison between Flowyager and other
approaches, we refer to Table II.

Authorized licensed use limited to: Max-Planck-Institut fuer Informatik    . Downloaded on October 07,2022 at 10:35:38 UTC from IEEE Xplore.  Restrictions apply. 



SAIDI et al.: EXPLORING NETWORK-WIDE FLOW DATA WITH FLOWYAGER 1991

TABLE II
COMPARISON OF SYSTEMS W.R.T. FUNCTIONALITY OFFERED. ✓: FULL

SUPPORT, ✗: NO SUPPORT

To underline Flowyager’s capabilities for exploring network
data, we show in Fig. 1 and Fig. 2 screenshots of Flowyager’s
Web interface. The Web interface highlights that searches
are possible across time ranges, site sets, and feature sets.
Moreover, it showcases Flowyager’s drill-down capabilities
that are also visually supported.

Flowyager is a modular system that consists of three main
components:

1) FlowAGG, which takes existing flow (or packet) cap-
tures as input and computes flow summaries, using
Flowtrees (see below), which it stores and exports.
Besides, FlowAGG may, if it has enough storage, keep
a local copy of the flow captures themselves.

2) FlowDB, which takes flow summaries as input, stores,
and indexes them, while using them to answer FlowQL
queries. It can use FlowAGG internally to compute
further flow summaries.

3) FlowQL, which uses the flow summaries kept within
FlowDB to answer interactive or batch-style queries
including Hierarchical Heavy Hitter/top-K queries,
Above-Thresh queries, or top-K heavy changer queries
across time and sites.

To better understand the system architecture, Figure 3 gives
an overview of the overall system, while Figure 4 presents
Flowyager’s processing pipeline. Each router sends its data to
a NetFlow collector 1 , which forwards it to one of potentially
many distributed FlowAGG instances 2 . Each FlowAGG
instance computes summaries 3 and then uploads these either
to another FlowAGG instance or directly to FlowDB 4 .3

FlowDB then processes the summaries 5 and uses them to
answer user queries 6 .

Flowtree is a data summary of a stream of raw flow data
that supports efficient 1-d HHH extraction and other operators.
Flowtrees are the data primitives of Flowyager. Details on
the design and implementation of Flowtree data structure and
Flowtree operators are presented in Section IV.

FlowAGG uses a separate plug-in, written in C, for each
data source, including IPFIX, NetFlow, sFlow, and libpcap.

FlowDB is responsible for collecting and storing the
Flowtrees. It also provides an interface that the user of the

3For simplicity we restrict our discussion to a centralized instance of
FlowDB However, it is possible to use a hierarchical design similar to what
has been proposed for logs of distributed servers [78], [79].

Fig. 1. Flowyager: Interacting with 1-feature Flowtrees.

Fig. 2. Flowyager: Interacting with 2-feature Flowtrees.

Flowyager can use to answer network-wide queries based
on the stored Flowtrees, FlowQL, whose design is largely
inspired by GSQL [20] which uses an SQL-like query lan-
guage. Using GSQL directly does not suffice due to the
unique capabilities of Flowyager. Details on the design and
implementation of FlowDB are presented in Section V.

In total, it took approximately 21k lines of code (LoC) in
C and C++ to realize Flowyager. About 16k LoCs are for
FlowDB, 1.5k for FlowAGG, 2.5k for Flowtree library, and
1k for shared components.

IV. FLOWTREE

Flowtree is the data structure that is used as a data primitive
in Flowyager. Before we dive into the details of Flowtree and
its operators, we provide background on Hierarchical Heavy
Hitter (HHH) data structures.

Authorized licensed use limited to: Max-Planck-Institut fuer Informatik    . Downloaded on October 07,2022 at 10:35:38 UTC from IEEE Xplore.  Restrictions apply. 



1992 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 4, DECEMBER 2020

Fig. 3. Flowyager Architecture.

Fig. 4. Flowyager Processing Pipeline.

A. Hierarchical Heavy Hitters

To enable Flowyager we need succinct summaries from flow
captures that are light to transfer, yet, allow for real-time,
interactive queries using different flow feature sets. A flow
feature refers to any of the components of a flow’s 5-tuples,
namely protocol, src and dst IP, src and dst port. A feature set
includes a subset of the possible 5 flow features.

We take advantage of the fact that most of the data on the
Internet is skewed in the sense that Zipf’s law [80], [81], [82]
typically applies. However, flat summaries, i.e., histograms, do
not suffice. Rather, we need hierarchical heavy hitters (HHH).4

HHH utilize attribute hierarchies and identify the most popular
elements across a hierarchy. For IPv4 prefixes, we use the
network prefix length as an obvious feature hierarchy. As such,
10.1.2.0/23 is the parent of 10.1.2.0/24 and 10.1.3.0/24. For
ports, we can use port ranges, e.g., 80/15 is the parent of 80/16
and 81/16. Each feature hierarchy, by default, uses a mask. An
IP a.b.c.d is part of the prefix a.b.c.d—n1 and a.b.c.d—n1 is a
more specific prefix and, thus, a child of a.b.c.d—n2 if n1 >
n2. The same applies to ports, whereby, e.g., 0—8 refers to the
ports from [0, 63]. It is possible to define custom hierarchies,
e.g., all Web ports, all DNS ports, or all well-known ports.

Ideally, one would use 5-dimensional hierarchical heavy hit-
ters (5-d HHH), across all flow features. Unfortunately, this
is infeasible due to its computational complexity [71], [83].
Rather, we use 1-d HHH which can be updated in amortized

4The set of HHH for a single hierarchical attribute with popularity counts
and a threshold θ corresponds to finding all nodes in the hierarchy such that
their HHH count exceeds θ∗N, whereby the HHH count is the sum of all
descendant nodes which have no HHH ancestors.

Fig. 5. Example: 2-Feature flow hierarchy.

O(1) time per entry while maintaining the accuracy for HHH
and space efficiency of O(H/εlog(εN)), whereby N is the num-
ber of items processed, H is the number of hierarchy levels,
and ε bounds the precision [71], [83].

Contrary to previous work, we do not restrict the 1-d HHH
to a single flow feature. Our first key functionality is that we
can generalize 1-d HHH by defining a joined hierarchy for a
given feature set, e.g., a joined hierarchy for both dst IP and
dst port, whereby, the parent of 10.1.2.0/24—80/16, as well
as 10.1.3.0/24—81/16 (IP range—port range) is 10.1.2.0/23—
80/15. The parent of 10.1.2.0/23—80/15 is 10.1.0.0/22—80/14
and its great-grandparent is 10.1.0.0/21—80/13. For visual-
ization of a sample 2-f hierarchy see Figure 5. In effect, we
rely on generalized flows: Flows summarize related packets
over time at a specific aggregation level. Possible feature sets
include “4-feature” flows (i.e., (src IP, dst IP, src port, dst
port)), “2-feature” flows, e.g., (dst IP, dst port) (DIDP).

The joined hierarchy can capture the correlation of more
than one dimension, e.g., the correlation between IP activity
and port activity. It allows identifying heavy hitters on sets of
features, and thus, investigating more complex use cases. For
example, in an attack, both the target IP and port are important
to investigate the type of attack. In general, any query that
involves multiple features can be potentially benefited by this
joined hierarchy.

Our second key functionality is that if the 1-d HHH data
structure supports the operators merge (∪) and compress, we
can compute summaries across time and/or space. In effect,
these two operators allow us to add the features time and loca-
tion. Given two data structures, A1 for time period t1 (location
l1) and A2 for t2 (l2), we get the joined data structure by
A12 = (A1 ∪ A2). The compress operator is especially use-
ful in reducing the memory footprint of the structure. This
operator prunes the tree leaves, and if needed the internal
nodes, whose contributions are less than some configurable
thresholds, and summarizes their contribution to their parents.

Other operators are diff , query, drill-down, HHH resp. TOP-
k, Above-x The diff operator is useful to identify changes,
the drill-down operator to explore sub-regions. The HHH and
Above-x operators allow us to find popular feature sets. The
operators are used for interactive queries via FlowQL.

B. Flowtree Data Structure

After evaluating different 1-d HHH data structures, includ-
ing those of Cormode et al. [71], [83], Basat et al. [23], and
Mitzenmacher et al. [72], we decided to augment the struc-
ture by Cormode et al.: this data structure is self-adjusting
and its entries can be easily extracted via enumeration; thus,

Authorized licensed use limited to: Max-Planck-Institut fuer Informatik    . Downloaded on October 07,2022 at 10:35:38 UTC from IEEE Xplore.  Restrictions apply. 



SAIDI et al.: EXPLORING NETWORK-WIDE FLOW DATA WITH FLOWYAGER 1993

Algorithm 1 Flowtree: Creation/Update
Function: Build_Flowtree (pkts resp. flows)

1: Initialize Flowtree
2: for all pkts/flows do
3: Extract_features(pkt resp. flow).
4: Construct node from features.
5: Add (Flowtree, node, feature set).

Function: Add (Flowtree, node, features)
1: Add_node(Flowtree, node, features).
2: next = next_parent(node).
3: while next != parent(node) or (next ∈ tree). do
4: Add_node(Flowtree, next, NULL) with probability p.
5: next = next_parent(next).

Function: Add_node(Flowtree, node, features)
1: if node exists then
2: comp_pop[node] + = stats(flow/pkt).
3: else
4: Insert node with comp_pop[node] = stats(flow/pkt).
5: parent(node) = find_parent(Flowtree, node).
6: for child in children(parent(node)) do
7: if child ∈ node then
8: parent(child) = node.

Algorithm 2 Flowtree: Stats and Compress operator
Function: Stats(Flowtree)

1: Initialize pop to comp_pop for all nodes
2: Node_list = nodes of Flowtree in DFS order
3: for node in Node_list do
4: pop[parent(node)] + = pop[node]

Function: Delete(Flowtree, node)
1: parent = find_parent(Flowtree, node).
2: comp_pop[parent] + = comp_pop[node].
3: children(parent) + = children(node).
4: Free node

Function: Compress(Flowtree,
thresh_comp_pop, thresh_pop)

1: Stats(Flowtree).
2: for each node do
3: if (node is leaf and

comp_pop[node] < thresh_comp_pop) then
4: Delete(Flowtree, node)
5: else if (comp_pop[node] < thresh_comp_pop

and pop[node] < thresh_pop) then
6: Delete(Flowtree, node)

it provides natively drill-down capabilities. Flowyager does
not intrinsically depend on this data structure; rather, it can
be built on top of any data structure that supports abstract
hierarchies and the basic operators.

Flowtree Data Structure: Generalized flows form a tree via
its hierarchy where each node corresponds to a flow. An edge
exists between any two nodes a, b if a is a subnode of b in
the feature hierarchy, i.e., if a ⊂ b—see Figures 8(a) and 8(b).
We annotate each node with its popularities, including packet
count, flow count, and byte count for UDP and TCP. The
popularity of a node is the sum of its own popularity and the
popularity of the children—see Figure 7(c).

However, during the construction of the trees, we only keep
the nodes’ “complementary popularity,” namely the popularity
(pop) that is not covered by any of the children. Thus, it is
possible to prune such a tree by pushing the contribution of
the pruned nodes to their parent. This is a key functional-
ity for efficiently updating our self-adjusting data structure.
Flowtree keeps “popular” nodes and prunes “unpopular” ones
by summarizing them at their parent. Flowtree inherits the
insertion and self-adjusting strategy from Cormode et al. but
rather than allowing the number of nodes to grow unlimited,

Fig. 6. Flowtree Queries.

Fig. 7. Flowtree concept.

Fig. 8. 4-feature Flowtree.

we limit the maximum number of nodes that a tree can contain
by repeatedly pruning (compressing) the tree when necessary.
Still, Flowtree closely matches the excellent performance and
accuracy bounds for 1-d HHH in terms of space efficiency and
precision.

C. Flowtree: Visualizing the Concepts

We start with the visualization of the differences between
popularities and complementary popularities in Figure 8. Next,
we show the two different feature hierarchies, namely a
1-feature hierarchy on IP addresses, and a 4-feature hierar-
chy on src/dst IP addresses and src/dst ports with and without
popularities, see Figures 7(a) and 8.

Initially, a Flowtree has exactly one entry—the root. When
adding a node, we add a new leaf node if necessary and a sub-
set of the nodes on the path to the first existing parent, (in the
worst case the root) and update the statistics of the leaf node.
We call these intermediate nodes as internal nodes. Thus, each
node maintains the complementary popularity (comp_pop), the
popularity (pop) that is not covered by any of the children, see
Algorithm 1. Popularities are computed from the complemen-
tary popularities by summing the complementary popularities
of all nodes in its subtree including its own. This can be done
via a depth first search in O(# nodes) time, see Algorithm 2.
This uses two functions for finding parents of a node. par-
ent(node) refers to the direct parent in the feature hierarchy
while find_parent(node) refers to the parent in the Flowtree.

Authorized licensed use limited to: Max-Planck-Institut fuer Informatik    . Downloaded on October 07,2022 at 10:35:38 UTC from IEEE Xplore.  Restrictions apply. 



1994 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 4, DECEMBER 2020

Updating an existing node corresponds to finding it, which
takes time O(1) using an appropriate hash-map. Adding a new
node may take up to O(# hierarchy level) time (using an appro-
priate hash-map). Yet, the expected number of new nodes is
small if the distribution of the data is skewed.

To limit Flowtree memory footprint, we periodically or on
demand, delete nodes with low popularity. We first compute
the popularities by using the stats function in Algorithm 2 and
then prune nodes whose complementary resp. absolute popu-
larity are below an adjustable threshold. This ensures that at
any time the number of nodes in a Flowtree is proportional
to the number of processed flows resp. less than a predefined
maximum. The complementary popularity of a deleted node as
well as its children are pushed to its parent. The overall cost of
such a compression step is O(# nodes). Note that since only
nodes with small popularity are deleted, the complementary
popularity of an interior node is a good estimate of the cardi-
nality of the contributing flow set. Finally, to control the rate
of the growth of the tree and preventing the frequent addition
and deletion of internal nodes, we insert the internal nodes
with a probability of p. The default value of p is 0.3.

D. Flowyager Operators

Query and Drill-Down: The base operators are query (see
Fig. 6) and drill-down. If the feature f is a node in the
Flowtree, the answer is computed from the node statistics.
Otherwise, we find the potential node, q, that corresponds to
f and estimate its popularity based on the popularity of the
predecessor of q, p, and its children, C. We split the chil-
dren into two subsets: Cf and Co = C − Cf , whereby Cf
includes those that are a subset of f in the hierarchy. Now,∑

c∈Cf
pop(c) is a lower bound for the popularity of f and

two estimates of f ’s popularity are pop(p) −∑
c∈Co

pop(c)
or comp_pop(p) +

∑
c∈Cf

pop(c), see Fig. 6. If the feature
set does not correspond to a node p, the query is expanded
to a tree-walk starting at the smallest possible parent of p.
The output of the query are then all nodes and their popu-
larities that match the input feature set. For example, src_ip
= a.b.0.0—16 and src_port = 80—16 start at node (a.b.0.0—
16,80—8) and outputs only the nodes where src_port is 80 and
src_ip is a subprefix of a.b/16. Drill-down queries retrieve the
children of a node. Note that we can derive estimates for all
flows, from mice to elephants: even for low-popularity nodes,
the number of flows remains a good estimate for the number
of contributing flows.

Above-t: Results in a tree-walk and all nodes whose popu-
larity are above the threshold value are returned.

Top-k: To compute the top-k, we identify the Flowtree entry
with the largest popularity, delete its contribution, and then
iterate. Hereby, we use a priority queue.

Merge: We merge two Flowtrees by adding the nodes of
one to the other. Note that the update will only be done
for the complementary popularities—see Algorithm 3 and
Fig. 7(a)—, with missing nodes being assigned a popularity
of zero. The statistics have to be recomputed and, to reduce
the memory footprint, we compress the joined tree. If the
total absolute contributions of the two trees differ significantly,

Fig. 9. Flowtree Operators: Merge and Diff.

Algorithm 3 Flowtree: Operators
Function: Merge(Flowtree 1, Flowtree 2)

1: Flowtree = Flowtree 1
2: for each node in Flowtree 2 do
3: Add_node(Flowtree 1, node)

Function: Diff(Flowtree 1, Flowtree 2)
1: Flowtree = Merge(Flowtree 1,Flowtree 2)
2: for each node n in Flowtree 2 do
3: comp_pop(n) = abs(comp_pop(n) - 2*comp_pop2(n)).

one should rescale the complementary popularities of the trees
before merging.

Diff and HeavyChanger: Just as one can merge Flowtrees,
one can also compute the difference between two trees. This
is a merge operation with subtraction instead of addition—see
Algorithm 3 and Fig. 7(b). Heavy changers are detected by
using Top-k on diff of the two trees.

Flowtrees maintain counters for various features of the
flows. In the current implementation, we use counters
for packet, byte and flow counts. This structure supports
cardinality-based queries but is limited to the elements (fea-
tures) already in the tree (nodes). It is possible to maintain
additional counters and support additional cardinality-based
queries, e.g., using counters for ports, but at the cost of
requiring additional space. In some cases, this is necessary.
For example, such cardinality-based queries will enable the
detection of non-volumetric attacks, e.g., semantic attacks. By
allocating more space and maintaining more counters, it is pos-
sible to detect different types of attacks, e.g., “slow” DDoS
attacks (Slowloris). We plan to explore the accuracy of cardi-
nality based queries and the effect of allocating more space
and maintaining more counters in Flowtrees as part of our
future in future work.

V. FLOWDB

FlowDB collects and stores Flowtree summaries computed
by FlowAGG in persistent storage. Each Flowtree has a unique
key that is made from its timestamp which along with its gran-
ularity reflects a time interval, the id of the site/location, and
its feature-set. The values are the Flowtrees, which are stored
as byte buffers. Figure 10 visualizes FlowDB’s architecture.

A. FlowDB Implementation

Currently, our database of choice is MongoDB [84] because
it is lightweight, although any other key-value datastore can be
used. To accelerate query processing, we use an in-memory
index and an in-memory cache. The in-memory index is a
collection of T*-trees that track Flowtrees and enable range
queries over different time periods. The in-memory cache uses
a least recently used (LRU) policy to keep recently added or

Authorized licensed use limited to: Max-Planck-Institut fuer Informatik    . Downloaded on October 07,2022 at 10:35:38 UTC from IEEE Xplore.  Restrictions apply. 



SAIDI et al.: EXPLORING NETWORK-WIDE FLOW DATA WITH FLOWYAGER 1995

Fig. 10. FlowDB Overview.

queried trees in memory. FlowDB is designed with paralleliza-
tion in mind: it is capable of receiving multiple streams of
Flowtrees from multiple FlowAGG daemons while answer-
ing queries to multiple users at the same time. Parallelization
is employed in performing major tasks such as handling
requests from FlowAGG daemons and remote API calls, stor-
ing Flowtrees in persistent storage, and query processing.
Upon receiving a query, the system first checks whether the
queried trees are in memory. In case of cache misses, it
retrieves trees from storage.

The system is highly configurable in terms of memory
usage, by setting a maximum number of Flowtrees in memory,
cache eviction interval, degree of parallelization, etc. The max-
imum number of Flowtrees in memory controls the memory
footprint of FlowDB. To access the database, FlowDB offers
both an API with the services Add Flowtree and Get Flowtree
and an interface for FlowQL. FlowAGG and other components
of Flowyager use the Apache Thrift Remote Procedure Call
(RPC) framework [85] for communication.

To enable Geo-Distributed Query Execution, the in-memory
index keeps track of whether a Flowtree is stored locally or at
a remote FlowDB. Thus, if necessary, all remote Flowtrees can
be fetched via the FlowDB API to answer a FlowQL query. In
our planned geo-distributed query execution, we partition site-
IDs and map a site-ID to a FlowDB instance. Once a FlowDB
instance receives a query, it will check whether the given site-
ID is stored locally. If the required Flowtree is not stored
locally, it can issue a request to the target FlowDB instance
and retrieve the Flowtree. Once the Flowtree is retrieved, it will
be merged with the Flowtrees that are already present and the
intended query is fulfilled. The evaluation of this feature is
beyond the scope of the current manuscript.

B. FlowQL Query Language

To realize FlowQL, we took inspiration from SQL key-
words, yet we developed our own grammar. We used
ANTLR [86] to generate the parser for the grammar. We offer
an interactive command-line shell as well as a graphical user
interface using R shiny(see [87]) the screenshots from Fig. 1
and Fig. 2. More specifically, with FlowQL the user chooses
their operator via a SELECT clause, one or multiple time

periods via a FROM clause, and the feature set via a WHERE
clause.

SELECT: specifies the answer type. Allowed values
include ‘pop’ for popularity or flow/byte/packet
count, ‘top-K’ for the top-k most popular flows,
‘HHH-P’ for the 1-d hierarchical heavy hitters
with flow counts above P% of total traffic, ‘hc-
K’ for the top-k heavy changers, ‘above-T’ for
all flows with popularity above t , and ‘*’ for all
flows satisfying the WHERE clause.

FROM: specifies one or multiple time periods.
WHERE: selects the feature sets and one or multiple con-

ditions. Possible feature elements are site_id,
src_ip, dst_ip, src_port, dst_port, proto. Possible
values are ANY or any region, IP prefix, or
port range (using the IP—mask resp. the port—
portmask syntax). Combinations are feasible via
(AND, OR, and ()).

Thus, FlowQL queries have the following syntax:
SELECT [pop, top-k, hc-k, above-t, hhh-k, *]

FROM (time YYYY-MM-DD hh:mm to YYYY-MM-DD hh:mm)+

WHERE ([Conditions via AND, OR, ), (, feature = value])+

Using FlowQL, we found that we often wanted to repeat
the same query across multiple time bins or sites. Thus, we
added two iterators: answer-bin-x that iterates across time
bins of size x minutes and site_id=ITR-x--n that iterates
across all sites within a site set, specified with an interval, e.g.,
[x , x + 2n − 1], or using a pattern.

To be able to drill-down and inspect a specific time-range in
more detail, we additionally provide drill-down queries. In a
drill-down query, a particular granularity in which one desires
to inspect the traffic should be specified. For instance, to see
the result of a query in 15-minute time bins, one should specify
bin15 in the query.

C. Query Execution

Upon receiving a FlowQL query, first, the WHERE clause
is converted into a Disjunctive Normal Form. This results in
breaking down the current query into smaller queries, which
we call mini-queries.

Each mini-query is then processed independently. For each
mini-query, the corresponding trees are fetched considering
the time-range, granularity, and feature sets. For instance,
for a query requiring src_port=X, 1-feature trees, SP in
this case, are fetched. In a non-drill-down query, trees with
the highest granularity existing in FlowDB are fetched. For
a drill-down query, trees with the granularity specified in
the query are fetched. If the specified granularity does not
exist in FlowDB, multiple lower-granularity trees are merged
using the MERGE operator to build trees with the specified
granularity. Consider the following query which asks for
bin-30:
SELECT pop(any,byte,bin30) FROM (time

2018-05-09 00:00 to 2018-05-09 23:59) WHERE

site_id=ANY and src_port=X

This is a drill-down query to zoom into a full-day time-range
in half-an-hour bins. Now assume that there are no 30-min

Authorized licensed use limited to: Max-Planck-Institut fuer Informatik    . Downloaded on October 07,2022 at 10:35:38 UTC from IEEE Xplore.  Restrictions apply. 



1996 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 4, DECEMBER 2020

TABLE III
DEPLOYMENT OVERVIEW: IXP, ISP, AND MAWI

granularity trees in FlowDB for the specified time-range, but
there are 15-minute granularity trees. Then for each time-
bin, two 15-minute trees will be merged to build the required
granularity.

If the number of trees to be merged is large, the merge oper-
ation is performed in parallel to speed up the merge process. In
a heavy changer query, two time-ranges should be provided
and the trees fetched for each of these two time-ranges are
diff’ed using the DIFF operator.

Then, the final trees are processed using different Flowtree
operators to fulfill the query conditions, e.g., src_port=X.

If the query is pop, knowing the popularity is as easy as
finding the corresponding node in the tree and returning the
popularity value. If the node is not in the tree, an estima-
tion using the parent’s popularity is returned as previously
described in IV-D.

If the query is above-T, ABOVE-T operator with threshold
T is used. For the top-K and hhh-P, the TOP-K operator will
be used. In top-K, it should return the top K flows with any
non-zero popularity. In hhh-P, P is the threshold for the fraction
of total contributions.

VI. EXPERIMENTAL DEPLOYMENTS

We rolled out and tested Flowyager in three different types
of networks, namely a large European IXP (IXP), a tier-1 ISP
(ISP), and our testbed using a sample dataset (MAWI)—see
Table III for an overview. In this article, we report on exper-
iments on stored data that we use for reproducibility. At two
locations, the IXP and the ISP, we are in the process of moving
towards live data import after extensive testing on site.

Ethical Considerations: We are fully aware of the sensitiv-
ity of network data and, therefore, only work with a subset
of the packet header information, namely src IP, dst IP, src
port, dst port, protocol, whereby all IPs have been consis-
tently anonymized per octet (bijective substitution using a hash
function), even though this may negatively affect prefix aggre-
gation. Note that the live operational deployment of Flowyager
will not require such anonymization.

IXP Dataset: This dataset consists of IPFIX flow captures
at one of the largest Internet Exchange Points (IXPs) in the
world with more than 800 members and more than 8 Tbps peak
traffic. The IPFIX flow captures are based on random sampling
of 1 out of 10k packets that cross the IXP switching fabric.
The anonymized capture includes information about the IP and
transport layer headers, as well as packet and byte counts. To
evaluate the system at real-world scales, we included all sites
during the first week of September 2019. Each site corresponds
to the router interface of an IXP member connected to the
IXP’s switching fabric.

TABLE IV
OVERVIEW OF THE FEATURE SETS OF FLOWTREE

We deployed Flowyager within a virtual machine (VM) on
a server at the IXP’s premises. The VM is assigned 400 GB
of memory and 40 threads on a machine with two Intel-Xeon-
gold 6148 CPUs each with 40 threads.

ISP Dataset: This dataset consists of approx. 1,300 NetFlow
streams (one per interface) from a major tier-1 ISP. We
receive NetFlow data from 40 routers located in 30 cities in
4 European countries, as well as the U.S. The ISP’s internal
systems preprocess the raw NetFlow streams into 26 separate
ASCII data streams. The NetFlow packet sampling is iden-
tical across all the routers. We include all data from Apr.
01, 2019 (00:01:00 UTC) to Apr. 03, 2019 (02:01:00 UTC).
We deployed Flowyager as a Docker container with 94 GB
memory and 32 threads on a machine with two Intel Xeon
E5-2650 CPUs.

MAWI Dataset: This dataset consists of packet-level capture
collected at the transit 1 Gbps link of the WIDE academic
network to its upstream ISP on May 9-10, 2018. Each packet
capture lasts for 15 mins and contains around 120 M pack-
ets. The anonymized trace is publicly available [88] and we
use it to be able to release sample queries and results. We
interpret each direction as a site. For this dataset, we deployed
Flowyager on a testbed machine, with 128 AMD-EPYC 7601
CPUs and 1.5TB memory.

Flowyager Setup: In terms of the basic setup for the
Flowyager evaluation, we choose fixed time periods rather than
a fixed number of flows. The advantage of the former is that
we can easily summarize across time and that we can even
look at coarser time granularities. The advantage of the latter
is a constant number of entries to summarize. We choose the
former rather than the latter as summarizing and investigat-
ing across time are typical network operator tasks. We keep
Flowtrees for every 15 minutes for every site for the IXP and
ISP datasets and 1 minute for the MAWI dataset. We gener-
ate 11 different feature trees, namely all four 1-feature trees,
all six 2-feature trees, and a 4-feature tree, see Table IV for
the details. By default, we limit each Flowtree to 40k nodes.
1-feature port Flowtrees are limited to 10k nodes. In addition,
we generate aggregated trees for 15 minutes, 1 hour, 1 day,
and 1-week time granularities, each with at most 40k nodes.
This results in one tree per site for each time granularity and
a single tree for all sites for each time granularity.

Big Data Analytics Setup: We compare Flowyager’s
performance with task-specific data-parallel Python scripts,
as well as installations of a prominent big data analytics plat-
form, namely Spark [19], and a column-based state of the art

Authorized licensed use limited to: Max-Planck-Institut fuer Informatik    . Downloaded on October 07,2022 at 10:35:38 UTC from IEEE Xplore.  Restrictions apply. 



SAIDI et al.: EXPLORING NETWORK-WIDE FLOW DATA WITH FLOWYAGER 1997

Fig. 11. ECDF of # of entries–all sites (IXP and ISP).

database, namely ClickHouse [62]. Each installation was done
on the same VM as Flowyager. Note that this implies that
Spark was not deployed on a physical cluster of machines but
in a multi-threaded environment.

VII. FLOWYAGER PROTOTYPE EVALUATION

Next, we describe our experience with deploying
Flowyager, which we will make publicly available for
non-commercial use. Our evaluation highlights the four main
strengths of Flowyager: reduced storage footprint, low transfer
cost, rapid response to a wide range of queries, and high
accuracy. Since these characteristics are related to our choice
of underlying data structure and its resp. parameters, we start
by evaluating Flowtree—the current basis of Flowyager.

A. Flowtree Evaluation

Input Data Skewness: One motivation for using HHHs is to
take advantage of the skewed input data. We indeed confirm
that the flow captures are skewed in the sense that for all
feature sets, all time periods, and all sites with enough traffic,
the traffic volume follows a skewed distribution.

Next, the data structure should be able to summarize time
periods with small as well as large numbers of flows as under-
lined by Figure 11, which shows the empirical cumulative
distribution (ECDF) of the number of flow entries per 15-
minute Flowtree for the IXP and the ISP datasets using a
logarithmic x-axis. We find a huge skew. More than 37.5%
of the time periods (per site) have less than 1,000 entries, yet
more than 12.5% have more than 50k entries. This underlines
that the data structure has to be very flexible to efficiently
summarize time periods with many as well as few flows.

Flowtree Creation Time: Next, we focus on the worst-case
runtime to generate Flowtrees, which, in part, depends on the
deployed hardware.5 We focus on one hour of data, the busy
hour, for the largest site at the IXP and 15 minutes of data–
again busy hour and largest site, for the ISP to get an upper
bound on the runtime. Note that the data includes more than
6.5M flows that have to be processed. We compute Flowtrees
for each 11 feature set while varying the maximum number
of Flowtree nodes from 5k to 50k. We repeat the experiments

5At the IXP we have Intel Xeon Gold 6148 CPUs; at the ISP we only have
Xeon-E5-2650 CPUs.

Fig. 12. Flowtree Build time (IXP/ISP: four/one 15-min. trees) vs. max. #
of nodes per feature set.

10 times and measure the runtime, in terms of wall time, for
generating trees as reported by the C++ chrono library.6

Figure 12 shows the 10th and 90th percentile of the tree cre-
ation times vs. the maximum number of Flowtree nodes. All
runtimes are well below 15 seconds for 1-hour resp. 15 min-
utes input files; thus, even if we have to process flows from
1,000+ sites, the deployed hardware, with moderate paral-
lelization, is sufficient for generating all 11-feature Flowtrees
in real time. In the worst case we needed 20 min to process
traces from all 1,000+ sites over one hour; that is, Flowtree
would only not become a bottleneck if the throughput tripled
and input from 1,000+ sites were to be processed. In that
case, aggregating firs over different subsets of the flow space
would be necessary. We notice different behavior for differ-
ent features: The (destination IP, port) feature trees are very
fast to compute, which can be explained by the fact that they
exhibit the most skewed input distribution. The full (4-feature)
trees take the longest—not surprising given that this feature
combination potentially has the largest number of tree nodes.

We also notice that from one feature set to the next, the
runtime sometimes decreases and sometimes increases as we
increase the maximum number of tree nodes. The reasoning
behind this surprising behavior is as follows. When the number
of Flowtree nodes increases, while compressions happen less
frequently, they take more time to run, given that they have to
process a larger input. If the data is skewed, the increase of the
compression runtime with the number of nodes is limited while
the reduction in the average delay between two compressions
is significant. Reversely, if the data is not less skewed, the
increase in compression runtime outbalances the reduction in
inter-compression delay.

Flowtree Accuracy: Next, we look at the accuracy of the
query results with focus on advanced queries, namely the 1-d
HHH and top-K queries for Flowtrees with different feature-
set. Our metrics are the Average Relative Error, ARE, and
the F1 score. The ARE is the average of the ratios between
the errors and the ground-truth values; that is, in our case,
1
n

∑n
i=1

|fi−f̂i |
fi

with n the number of flows, fi the flow popu-

larity and f̂i the estimated flow popularity. The F1 score is
the harmonic mean of precision and recall; accordingly, it
accounts for both false positives and false negatives and ranges

6We choose setup to similar to [23], [34] which also use wall time and
preload the input data into memory.

Authorized licensed use limited to: Max-Planck-Institut fuer Informatik    . Downloaded on October 07,2022 at 10:35:38 UTC from IEEE Xplore.  Restrictions apply. 



1998 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 4, DECEMBER 2020

Fig. 13. Accuracy of Flowtree for commonly-used queries (all feature sets at IXP).

from 0 to 1—1 being the best value (perfect precision and
recall) and 0 the worst. We calculate the ARE and the F1 score
for the 1-d HHH and top-K queries, with thresholds of 0.01%
and K = 1000 respectively, for each 15-minute Flowtree and
all sites over the IXP’s busy hour, letting the maximum num-
ber of nodes in the Flowtrees vary from 5k to 100k. Note
that we only evaluate the queries if a Flowtree summarizes at
least 10k flows within the 15-minute time period since other-
wise, the results would be a fraction of a flow, which does not
exist. To generate the ground truth, we use a Flowtree with an
unrestricted number of nodes. Finally, we only accept exact
matches: in case of HHH, if a generalized flow f is in the
actual heavy hitters it has to be returned by the HHH query;
if the HHH query returns instead, a parent or child of f in the
tree, this is a miss.

Figure 13(a) plots the median ARE values vs. the maxi-
mal number of nodes in the Flowtree and includes 10th and
90th percentiles as error bars in top-K and HHH queries. Our
experiment shows that even for 10k Flowtrees the median ARE
values are less than 0.0002 for all feature sets. Moreover, the
main reason for ARE variations are flows with relatively small
popularity.

The results for the F1 scores—see Figure 13(b) which
shows the median together with the 10th and 90th percentile
vs. the number of nodes per tree—confirm the excellent
performance of Flowtree. Even for small trees, the median
numbers are well above 0.9 for most feature sets. Moreover,
the number of outliers is small.

Flowtree vs. RHHH: Next, we compare Flowtree to a state-
of-the-art data structure, the constant time updates in hier-
archical heavy hitters (RHHH) [23]. More precisely, RHHH
is a randomized version of the deterministic HHH algorithm
(dHHH) proposed by Mitzenmacher et al. [72]. RHHH has
O(1) update complexity, improving the Ω(H) update complex-
ity of its deterministic counterpart, where H is the number of
hierarchy levels.

While both Flowtree and RHHH take in the maximum node
count as input, RHHH (and dHHH) have an additional input
parameter: the HHH-threshold. The HHH-threshold deter-
mines if a frequent item is a heavy hitter, and, thus, if a node
should be maintained in the tree. This complicates the usage
of RHHH since neither the number of flows nor their popu-
larity distribution is known in advance. Setting the threshold
too high creates a very shallow tree with high aggregation,
e.g., /16s and /8s, which does not keep enough detail. Setting

TABLE V
F1 SCORE ON TOP 1K SRC (DST) IPS FOR 1K, 5K, 10K, 20K, AND 40K

NODE FLOWTREE AND RHHH TREES

the threshold too low may result in a tree with more nodes
than the maximum node count. Indeed, we run into these lim-
itations when executing the publicly available code [89] on
the corresponding input. Hence, we evaluated the two systems
under similar conditions, i.e., with the dataset that was used to
evaluate RHHH [23] (CAIDA). The evaluation dataset comes
from Equinix-Chicago trace of CAIDA [90]—this contains 20
Million packets (no sampling) from a 1Gbps link in the colo-
cation facility in Chicago. In contrast, note that Flowtree is
self-adjusting.

We used a number of metrics: (1) system runtime, (2) F1, on
top 1k sources or destination of the input trace are present in
the trees of 1k, 10k, 20k, and 40k nodes, (3) accuracy (ARE),
i.e., how well the Flowtree or RHHH estimate the counters of
the heavy hitters, either single IPs or aggregations.

The system runtime for creating RHHH trees is, as expected,
quite constant: around 26 seconds. For Flowtree the time
is higher, around 50 seconds, even as the number of nodes
increases.

With regard to F1 score–identifying the correct set of heavy
hitters–we find that if RHHH is not tuned, its performance is
poor: very few of the IP heavy hitters are present and the
trees are very small; the F1 of Flowtree is significantly better.
Table V reports on the top-1k heavy hitter IPs indeed in the
tree for Flowtree vs. RHHH with different total numbers of
nodes (each time the threshold in RHHH is adjusted to produce
1k heavy hitters, i.e., the same output as Flowtree). For trees
with up to 10k nodes, Flowtree includes a significantly larger
number of heavy hitters than RHHH but beyond 10K nodes
the differences get smaller.

Next, we turn our attention to the accuracy of the estimated
values for each heavy hitter. We plot in Fig. 14 the estimated
value using Flowtree (left) and RHHH (right) compared to the
actual value for the 1k node trees—ARE on the top .1% IPs
of 0.71 for Flowtree vs. 0.92 for RHHH.

The closer a point is to the diagonal the higher its accuracy.
At first glance, RHHH might look better. However, it only con-
tains a small subset of the relevant HHs as many top-1k entries

Authorized licensed use limited to: Max-Planck-Institut fuer Informatik    . Downloaded on October 07,2022 at 10:35:38 UTC from IEEE Xplore.  Restrictions apply. 



SAIDI et al.: EXPLORING NETWORK-WIDE FLOW DATA WITH FLOWYAGER 1999

Fig. 14. Comparison of estimated vs actual popularities using Flowtree (left)
and RHHH (right).

Fig. 15. ECDF of space-saving for all Flowtrees (all time intervals/IXP
sites).

Fig. 16. ECDF: # of Flowtree nodes (IXP and ISP).

are aggregated by RHHH. Thus, Flowtree again significantly
outperforms RHHH.

Flowtree Space Saving: Given that we can compute
Flowtrees efficiently and that they accurately answer 1-d HHH
queries, we move on to study their space efficiency. Given the
F1 scores and ARE values we, for the rest of this article,
choose 10k nodes for the 1-feature Flowtrees for src and dst
ports and 40k nodes for all other feature combinations. (While
20k may be sufficient, using 40k does not increase the stor-
age resp. communication overhead significantly, as we apply
a final compress operation before using any Flowtree.)

To highlight the ability of Flowtree to compress its input,
Figure 15 plots the ECDF of Flowtrees space saving (1 −
#nodes in tree
#input flows ) for all sites and all 15-minute time intervals.

For almost all Flowtrees the space savings are well above
95%. This is also underlined by Figure 16 which shows the
ECDF of the number of actual Flowtrees nodes. Note that a
Flowtree will always contain less than 40k/10k nodes because
we always run a final compression. Alternatively, it might
simply happen that the data did not contain enough different
feature combinations in the first place.

Fig. 17. Space usage vs. raw compressed (gzip) input data.

Fig. 18. Pie Chart: MongoDB footprint.

B. Flowyager Evaluation

Flowyager Space Efficiency: Given the above results regard-
ing the capabilities of Flowtree, it is not surprising that
Flowyager achieves excellent compression ratios. For the IXP
(ISP), we see that compared to the original compressed IPFIX
data (original compressed ASCII flow summaries), the single
full-feature Flowtree in compressed binary format has a space
saving of 97% resp. 99.5%. With additional feature sets, e.g.,
all 1-feature Flowtrees and three 2-feature Flowtrees, we still
reach space saving of 92% resp. 97.5%. If we include all 11
possible feature combinations, the space saving is 89% resp.
96%. Even if we normalize not by the raw input data but only
against the necessary features for the Flowtrees, the space sav-
ings are still excellent, e.g., more than 97% for the 1-feature
Flowtree at the ISP. For a visualization of the space efficiency
relative to the size of the raw compressed (gzip) input data,
see Figure 17.

While 15-minute time granularity is excellent for answering
detailed queries, many queries involve coarser time granular-
ities. Thus, it can be useful to add time as another feature
and add 1-hour as well as 1-day aggregated Flowtrees by
merging (and then compressing) the smaller-time-granularity
Flowtrees. Flowyager does so automatically. While this needs
some extra memory, it adds less than 40% overhead—see
Figure 18—while offering the potential to significantly reduce
query response time. Moreover, should space become an issue,
Flowyager may decide to permanently delete smaller-time
aggregates while keeping higher-time aggregation summaries.
This is one of the design features that enable resource man-
agement with Flowyager. It is always possible to still keep
coarse grain summaries of previous time periods or site sets
even if disk space is running out.

Authorized licensed use limited to: Max-Planck-Institut fuer Informatik    . Downloaded on October 07,2022 at 10:35:38 UTC from IEEE Xplore.  Restrictions apply. 



2000 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 4, DECEMBER 2020

TABLE VI
BENCHMARK QUERIES FOR FLOWYAGER EVALUATION. NOTE THAT

THESE QUERIES CORRESPOND TO THOSE IDENTIFIED IN TABLE I

C. FlowQL Evaluation

Next, we focus on the performance (query response time)
of the query capabilities and the query engine using a set of
benchmark queries. In particular, we go back to the main tasks
of a network manager—recall Table I—and pick a benchmark
query for each of the identified tasks—note that the detec-
tion of one super-spreader requires two queries. These chosen
queries are shown in Table VI, the table which thus contains
queries for every single important network management task
tackled by related work.

To challenge Flowyager, we task it to execute these queries
for a full day for all sites in the IXP dataset. We evaluate

Fig. 19. IXP: Flowyager times (Table VI benchmarks).

three different ways of answering the queries using Flowtree,
namely using FlowQL with Flowtrees and 15-minute, 1-hour,
and 1-day aggregation. On the IXP machine, we execute each
benchmark 10 times and measure, just as before, the wall time
as reported by the C++ chrono library.

Figure 19 shows the resulting FlowQL query response
times for each benchmark as boxplots. Hereby, we distin-
guish between cold and hot query response times. In the hot
case, relevant Flowtrees may be retrieved from the in-memory
cache. In the cold case, we restart the in-memory cache pro-
cess for each benchmark. If we use the 1-day Flowtrees,
see Figure 19(a), the answers are readily available and the
response arrives in the blink of an eye (less than 1 second).
By using the in-memory cache we speed up query response
time by about 10 to 50%. We also check the accuracy of the
results and find that the results are accurate.7

With 1-hour trees, see Figure 19(b), the query response
times typically increase by roughly a factor of 7, even though
the number of Flowtrees that have to be processed increases by
a factor of 24. This is possible as Flowyager takes advantage

7We exclude Benchmarks 2, 5, and 9 as these benchmarks concern 60 min
time-intervals and, thus, cannot be answered using data at 1-day granularity.

Authorized licensed use limited to: Max-Planck-Institut fuer Informatik    . Downloaded on October 07,2022 at 10:35:38 UTC from IEEE Xplore.  Restrictions apply. 



SAIDI et al.: EXPLORING NETWORK-WIDE FLOW DATA WITH FLOWYAGER 2001

Fig. 20. IXP: Query response time comparison: Flowyager vs. ClickHouse vs. Spark (Table VI benchmarks).

of parallelization. For Benchmark 5 the query response time
is the worst as we have to execute an iterator across all 24
hours. Note, this is no principle limitation of the design of
Flowyager but a limitation of the implementation which does
not yet parallelize the iterators. If we move to 15-minute trees,
see Figure 19(c), the query response time increases further up
to a factor of eight. This highlights the efficiency obtained
by using higher granularity trees in the design of Flowyager.
Note, all benchmarks are executed using a research prototype
rather than a production system.

Using an appropriate Flowtree granularity, we can answer
all except one benchmark query in less than 5 seconds,
underlining that Flowyager is indeed able to answer apriori
unknown queries. This query response time enables interactive
exploration of the data.

D. Flowyager vs. Possible Alternatives

Finally, we explore how well Flowyager performs com-
pared to other systems. We picked three alternatives,
namely, using (a) task-specific data-parallel Python scripts,
(b) Spark [19]–a state of the art data analytics platform, and
(c) ClickHouse [62]–a state of the art column database. We
evaluated all these systems on the same machine and dataset
in IXP as previously described in Section VI.

First, we find that coding a custom python script for each
benchmark takes a reasonably experienced programmer at least
2-3 hours for programming and debugging even if they can
build upon a template from another benchmark. After all, it
takes time to validate that the script is indeed doing what it is
supposed to do. For some of the advanced tasks, e.g., the HHH,
we did not start from scratch but rather included existing code.
Nevertheless, this again did take additional time. Running the
Python code on a day of data did take a mean of 39 minutes
using a parallelization across 24 cores. Using 24 cores enables
the script to parallelize the tasks by processing each hour of
data in a separate process. Across all benchmarks, the Python
code needed a minimum of 19 minutes and a maximum of
54 minutes.

Second, we find that setting up Spark and coding the queries
require significant time. Indeed, it is necessary to first convert
the data into a Spark-compatible format to get any reasonable
performance (query response times less than 1 hour). This
takes roughly 15.5 minutes per day of data for the IXP site.

The resulting benchmark query response times are shown in
Figure 20. Using this preprocessed data as input, the bench-
mark queries take a minimum of 20 seconds and up to 800
seconds. Note that for Benchmark 8 Spark only computes
heavy hitters rather than HHH as implementing HHH on top
of Spark is non-trivial. To measure the CPU usage and disk
I/O usage of each Spark benchmark, we used the iostat com-
mand sampling every 5 seconds. In Figure 21, the x-axis shows
the round, i.e., the 5-second period in which we sample, and
y-axis shows the utilization in percentage. CPU utilization is
shown in square points, while the round points show the disk
I/O. We observe that in the majority of the cases, Spark is
bound by disk I/O rather than CPU. This holds for bench-
marks 1, 4-10. However, benchmark 2 is a drill-down query
and requires multiple GROUPBY statements. Also, benchmark
3 works with only two features. Hence, the intermediate results
are not too big to require frequent disk access. Therefore,
unlike other benchmarks, benchmark 2 and 3 are limited more
by CPU capacity than disk I/O. Indeed, this figure highlights
the significant overhead of query processing using only the
raw data.

Third, we set up an instance of ClickHouse. Here, it
is necessary to first load the data into the database. This
takes roughly 45 minutes per day of IXP data. On the
other hand, the resulting benchmark query response times
are significantly smaller than those of Spark, see Figure 20.
Again, ClickHouse only supports a limited version of the
HHH query for Benchmark 8. Figure 20 also includes the
Flowyager benchmark results from Section VII-C. Flowyager’s
benchmark performance supersedes all comparison systems.

E. Summary and Flowyager Limitations

Overall, Flowyager by far outperforms all three alterna-
tives. Moreover, Flowyager is adaptive and supports HHH and
physically distributed execution. We acknowledge that creat-
ing all Flowtrees does add some overhead–one day does take
roughly 4 hours. However, this is a one-time operation, and
overhead only matters if we consider archived data, but the
Flowtrees can well be generated as the flow captures arrive,
recall Section VII-A. Moreover, it is easy to do memory man-
agement within Flowyager; e.g., rather than purging older data,
we can summarize it.

Authorized licensed use limited to: Max-Planck-Institut fuer Informatik    . Downloaded on October 07,2022 at 10:35:38 UTC from IEEE Xplore.  Restrictions apply. 



2002 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 4, DECEMBER 2020

Fig. 21. CPU and disk I/O usage in Spark experiments.

The limitation of Flowyager is that its answers are only
estimates. However, these are accurate both for elephants and
mice flows alike. Hereby, we want to point out that most
network-wide systems anyhow rely on highly sampled flow
captures. As such the fact that we “only” provide estimates
does not increase the uncertainties dramatically. If higher accu-
racy is necessary, we recommend combining Flowyager for
data exploration with ClickHouse for focused in-depth anal-
ysis. Moreover, the insights from Flowyager can be used
to instantiate online non-sampled queries using streaming
network telemetry systems, such as Sonata [16].

VIII. USE-CASES

In this section, we showcase how to use Flowyager for
tackling typical network operator tasks.

Unveiling Application Trends: With Flowyager we can
easily infer the 10 most popular applications within a
time period using a top10 query with site_id = ANY and
src_port =ANY:
SELECT top(10,any,byte) FROM (time 2018-05-09

00:00 to 2018-05-09 23:59) WHERE site_id=ANY

and src_port=ANY

To then see how the popularity of each top 10 port
changed over time we use the query pop-bin60 for each port.
Therefore, the query would be:
SELECT pop(any,byte,bin60) FROM (time

2018-05-09 00:00 to 2018-05-09 23:59) WHERE

site_id=ANY and src_port=X

See Figure 22(a) for the results for the MAWI dataset. We
use the MAWI dataset for reproducibility as we will release the
sample queries and their output along with the code. The query
takes less than 1.4 seconds. Web and DNS related ports 80,
443, and 53 dominate. The same is true for the ISP. Still, during
peak, other port numbers are prominent as well, e.g., port 3074.

This port is used by Xbox LIVE and Games for Windows–Live.
The peak traffic time also is the peak activity time for gaming,
at least for residential customers of this Tier-1 ISP.

Traffic Matrix: Computing a traffic matrix involves deter-
mining all src/dst pairs with a traffic volume larger than
a value X. With Flowyager, one can use the above_t, for
src_i = ANYp and dst_ip = ANY. Therefore, the following
query can be used:
SELECT above(X,udp,byte) FROM (time

2018-05-09 00:00 to 2018-05-09 23:59) WHERE

site_id=ANY and src_ip=ANY and dst_ip=ANY

To highlight this capability we determine the src/dst traffic
matrix for the MAWI data, see Figure 22(b). It shows the traffic
matrix at different aggregation levels to detect which pairs
of the source (src) and destination (dst) prefixes (at different
granularity levels) are responsible for a large fraction of
traffic exchange. For visualization, we use a two-dimensional
heatmap where the x-axis corresponds to src IPs, the y-axis to
dst IPs, and the color to the traffic volume normalized by the
number of IPs within the area, i.e., traffic flowing from a src
prefix to a dst prefix. This query took less than 13 seconds.

Investigating DDoS Attacks: Network attacks, and in partic-
ular, distributed denial-of-service (DDoS) attacks are an ongo-
ing nuisance for network operators as well as network users.
A large body of research papers has focused on techniques
for detecting DDoS attacks, see, e.g., [91], [92], [93], [94],
including references and citations. Indeed, the multitude
and the impact of DDoS attacks, see, e.g., [95], [96],
have given rise to a variety of different mitigation tech-
niques, see, e.g., [97], [98]. Still, detecting DDoS attacks
reliably as well as diagnosing their root causes is critical
for starting countermeasures or taking preventive future
actions. Flowyager is an ideal system for tackling this
challenge.

Authorized licensed use limited to: Max-Planck-Institut fuer Informatik    . Downloaded on October 07,2022 at 10:35:38 UTC from IEEE Xplore.  Restrictions apply. 



SAIDI et al.: EXPLORING NETWORK-WIDE FLOW DATA WITH FLOWYAGER 2003

Fig. 22. MAWI: Data exploration.

Fig. 23. ISP: DDoS NTP attack investigation.

One of the most common signatures of DDoS attacks is
a sudden rise in traffic for src/dst ports that are used within
amplification attacks [95], [99], [100], [101]. Among such
ports are 0, 123 (NTP), 11211 (memcached), 53 (DNS), and
1900 (SSDP), as discussed above. Potential DDoS attacks
can be found by using the heavy changer query. It identifies
time ranges during which they occurred. We execute these
queries for each hour:
SELECT hc(100,any,byte) FROM (time 2019-04-01

00:00 to 2019-04-01 00:59)(time 2019-04-01

01:00 to 2019-04-01 01:59) WHERE site_id=ITR

and (dst_port=ANY or src_port=ANY)

Per hour this takes less than 0.3 seconds. Among the heavy
changers are high volume ports related to Web traffic, i.e.,
port 80, 443, as well as other ports where the volume can
easily vary. But, we also find some unusual ports, i.e., 123
(NTP) which are known to be involved in DDoS attacks.
Figure 23 shows a DDoS amplification attack in one of the
sites of the ISP. This is a DDoS attack on NTP (port 123).
Here, a very large number of src IPs scattered across multiple
networks are involved but only a few dsts are targeted; namely
two, whereby one of them receives more than 95% of the
attack packets. It took us less than 5 minutes of human time
and less than 1 minute computation time to find the attack for
port 123, the site, the src of the attacks, and identify the start
and the end of the attack. To illustrate the exploratory power
of Flowyager, we identified the hours where the attack took
place, see Figure 23(d), within a second. Then, we drill-down
to the 15 minutes granularity to infer the start and end of the
attack, see Figure 23(b), with a second query that took two
seconds of execution time:
SELECT pop(any,byte,bin15) FROM
(time 2019-04-01 01:00 to 2019-04-01
01:59) WHERE site_id = ITR and
dst_port = 123--16

Note, detecting slowly increasing DDoS attacks needs a
different approach. Here, a diff query to an earlier time period
can be used as an indicator.

Towards Real-Time DDoS Mitigation: Using insights from
historical analysis of DDoS attacks it is possible to use
Flowyager also for near-live analysis if we keep recent
Flowtrees at a shorter time granularity, e.g., 1-minute bins: we
can then either use the above queries to monitor ports highly
affected by DDoS attacks or we can use heavy-changer queries
to look for ports with unusual activity. If we see such unusual
activity, we can use the drill-down capabilities of Flowyager
to check if, e.g., the traffic is targeted at specific IPs, i.e., only
involves a small number of src or dst addresses, or involves
spoofed addresses, i.e., a large number of IP addresses. If
yes, Flowyager can be used to trigger an alarm which may
then blackhole the attack traffic, e.g., using a system such as
Stellar [97] or traffic scrubbing systems [96]. Recall that other
techniques, e.g., telemetry, need to know a-priori the queries
they have to execute. The power of Flowyager is that is can
answer arbitrary queries that are not known in advance and
using the already available network flow summaries supported
by router vendors. Thus, Flowyager offers security capabilities
that can help to identify arbitrary security issues. It can also
help in generating the appropriate queries to execute them in
real-time when, e.g., telemetry is used.

Lessons Learned: For our use cases neither the initial sam-
pling in the flow captures nor the Flowyager estimates were
detrimental to achieving the goal. However, we noticed some
implementation challenges, e.g., handling flows from routers
with unsynchronized clocks. We decided to use the timestamp
when the flow is arriving at FlowAGG. Note that this may lead
to some small amount of misbinning if the router is distant
(in terms of network delay) from the aggregator. However, the
impact is expected to be limited and probably well within the
typical uncertainty of flow captures. Note that our approach

Authorized licensed use limited to: Max-Planck-Institut fuer Informatik    . Downloaded on October 07,2022 at 10:35:38 UTC from IEEE Xplore.  Restrictions apply. 



2004 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 4, DECEMBER 2020

even enables us to update Flowtrees of past time bins, should
a significant number of flows arrive delayed.

Another observation is that one can tune Flowyager accord-
ing to the needs of the users. Overall, we find that a query can
be answered quickly if the aggregation level of the available
(cached) Flowtrees matches the query granularity in terms of
site sets and/or time granularity. The reason is that this avoids
merging Flowtrees on the fly. Thus, if many queries involve
the same subset of interfaces, e.g., per router, or all long-haul
interfaces, it may make sense to store additional Flowtrees, if
only temporarily. For example, keeping a Flowtree for all sites
adds little overhead but speeds up queries significantly.

IX. CONCLUSION

Network flow captures are widely available and are essential
for operators to monitor the health of their networks and
steer their evolution. Yet, due to their ever-increasing size and
complexity, their analysis is time-intensive and challenging.
In the past, this has substantially hindered ad-hoc queries
across multiple sites, for different time periods and over many
network features. In this article, we design, develop, and evaluate
Flowyager, a system that allows exploration of network-wide
data and answering ad-hoc a priori unknown queries within
seconds. It achieves this using already existing network flow
captures, without the need for specialized hardware, and without
the need to compile specific queries into telemetry programs
that should be known in advance and are slow to update.

Flowyager uses succinct summaries, Flowtrees, of raw flow
captures and provides an SQL-like interface, FlowQL, that
is easily usable by network engineers. We showcase the
performance and accuracy of Flowyager in two operational
settings: a large IXP and a tier-1 ISP. Our results show that
the query response time can be reduced by an order of magni-
tude, and, thus, Flowyager enables interactive network-wide
queries and offers unprecedented drill-down capabilities to
identify the culprits, pinpoint the involved sites, and determine
the beginning and end of a network attack.

REFERENCES

[1] R. Hofstede et al., “Flow monitoring explained: From packet capture
to data analysis with NetFlow and IPFIX,” IEEE Commun. Surveys
Tuts., vol. 16, no. 4, pp. 2037–2064, 4th Quart., 2014.

[2] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. D. Kolaczyk,
and N. Taft, “Structural analysis of network traffic flows,” in Proc.
Joint Int. Conf. Meas. Model. Comput. Syst., 2005, pp. 61–72.

[3] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traf-
fic anomalies,” in Proc. Conf. Appl. Technol. Archit. Protocols Comput.
Commun., 2004, pp. 219–230.

[4] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” in Proc. Conf. Appl. Technol. Archit. Protocols Comput.
Commun., 2002, pp. 323–336.

[5] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better
NetFlow,” in Proc. Conf. Appl. Technol. Archit. Protocols Comput.
Commun., 2004, pp. 245–256.

[6] C. Estan, S. Savage, and G. Varghese, “Automatically inferring pat-
terns of resource consumption in network traffic,” in Proc. Conf. Appl.
Technol. Archit. Protocols Comput. Commun., 2003, pp. 137–148.

[7] (2019). TCPDUMP/LIBPCAP Public Repository. [Online]. Available:
http://www.tcpdump.org/

[8] N. Duffield, C. Lund, and M. Thorup, “Estimating flow distributions
from sampled flow statistics,” in Proc. Conf. Appl. Technol. Archit.
Protocols Comput. Commun., 2003, pp. 325–336.

[9] B. Claise, “Cisco systems NetFlow services export version 9,” Internet
Eng. Task Force, RFC 3954, 2004.

[10] B. Claise, B. Trammell, and P. Aitken, “Specification of the IPFIX
protocol for the exchange of flow information,” Internet Eng. Task
Force, RFC 7011, 2013.

[11] (2019). InMon—Bhuyan2015Towards. [Online]. Available:
http://sflow.org/

[12] “Introduction to Cisco IOS NetFlow—A technical overview,”
Cisco, San Jose, CA, USA, White Paper, 2012. [Online].
Available: https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-
software/ios-netflow/prod_white_paper0900aecd80406232.html

[13] Exporting Flow Data Records (Juniper), Juniper, Sunnyvale, CA, USA,
2018. [Online]. Available: https://www.juniper.net/documentation/
en_US/junos/topics/concept/services-exporting-version9-flow-data-coll
ector.html

[14] 7750 SR, Alcater, Nanterre, France, 2014. [Online]. Available:
https://documentation.nokia.com/cgi-bin/dbaccessfilename.cgi/
9300731102_V1_7750 SR OS Route Configuration Guide 12.0.R4.pdf

[15] Exporting Flow Data Records (Juniper), Huawei, Shenzhen, China, 2020.
[Online]. Available: https://actfornet.com/HUAWEI_ROUTER_DOCS/
Router_All/Huawei_NE40_Product_Quick_Reference_Guide.pdf

[16] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: Query-driven streaming network telemetry,”
in Proc. Conf. ACM Spec. Interest Group Data Commun., 2018,
pp. 357–371.

[17] O. Tilmans, T. Bühler, I. Poese, S. Vissicchio, and L. Vanbever,
“Stroboscope: Declarative network monitoring on a budget,” in
Proc. 15th USENIX Conf. Netw. Syst. Design Implement. (NSDI), 2018,
pp. 467–482.

[18] S. Narayana et al., “Language-directed hardware design for network
performance monitoring,” in Proc. Conf. ACM Spec. Interest Group
Data Commun., 2017, pp. 85–98.

[19] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proc. 2nd USENIX
Conf. Hot Topics Cloud Comput. (USENIX HotCloud), 2010, p. 10.

[20] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk, “Gigascope:
A stream database for network applications,” in Proc. ACM SIGMOD
Int. Conf. Manag. Data, 2003, pp. 647–651.

[21] D. Sarlis, N. Papailiou, I. Konstantinou, G. Smaragdakis, and
N. Koziris, “Datix: A system for scalable network analytics,” ACM
SIGCOMM Comput. Commun. Rev., vol. 45, no. 5, pp. 21–28, 2015.

[22] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, “Finding
hierarchical heavy hitters in data streams,” in Proc. 29th Int. Conf. Very
Large Data Bases (VLDB), 2003, pp. 464–475.

[23] R. B. Basat, G. Einziger, R. Friedman, M. C. Luizelli, and E. Waisbard,
“Constant time updates in hierarchical heavy hitters,” in Proc. Conf.
ACM Spec. Interest Group Data Commun., 2017, pp. 127–140.

[24] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling flow management for high-
performance networks,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 41, no. 4, pp. 254–265, 2011.

[25] Q. Huang et al., “SketchVisor: Robust network measurement for soft-
ware packet processing,” in Proc. Conf. ACM Spec. Interest Group
Data Commun., 2017, pp. 113–126.

[26] R. B. Basat, G. Einziger, R. Friedman, and Y. Kassner, “Optimal
elephant flow detection,” in Proc. IEEE INFOCOM Conf. Comput.
Commun., 2017, pp. 1–9.

[27] Y. Da et al., “dShark: A general, easy to program and scalable frame-
work for analyzing in-network packet traces,” in Proc. 16th USENIX
Conf. Netw. Syst. Design Implement. (NSDI), 2019, pp. 207–220.

[28] G. Cormode and S. Muthukrishnan, “An improved data stream sum-
mary: The count-min sketch and its applications,” in Proc. Latin Amer.
Symp. Theor. Informat., 2004, pp. 29–38.

[29] G. Cormode and M. Hadjieleftheriou, “Finding frequent items in data
streams,” Proc. VLDB Endowm., vol. 1, no. 2, pp. 1530–1541, 2008.

[30] G. Cormode and S. Muthukrishnan, “Space efficient mining of multi-
graph streams,” in Proc. 24th ACM SIGMOD SIGACT SIGART Symp.
Principles Database Syst. (PODS), 2005, pp. 271–282.

[31] S. Narayana, M. Tahmasbi, J. Rexford, and D. Walker, “Compiling path
queries,” in Proc. 13th Usenix Conf. Netw. Syst. Design Implement.
(NSDI), 2016, pp. 207–222.

[32] Y. Li, R. Miao, C. Kim, and M. Yu, “FlowRadar: A better netflow for
data centers,” in Proc. 13th Usenix Conf. Netw. Syst. Design Implement.
(NSDI), 2016, pp. 311–324.

[33] Q. Huang, P. P. Lee, and Y. Bao, “Sketchlearn: relieving user bur-
dens in approximate measurement with automated statistical inference,”
in Proc. Conf. ACM Spec. Interest Group Data Commun., 2018,
pp. 576–590.

Authorized licensed use limited to: Max-Planck-Institut fuer Informatik    . Downloaded on October 07,2022 at 10:35:38 UTC from IEEE Xplore.  Restrictions apply. 



SAIDI et al.: EXPLORING NETWORK-WIDE FLOW DATA WITH FLOWYAGER 2005

[34] T. Yang et al., “Elastic sketch: Adaptive and fast network-wide mea-
surements,” in Proc. Conf. ACM Spec. Interest Group Data Commun.,
2018, pp. 561–575.

[35] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with OpenSketch,” in Proc. 10th USENIX Conf. Netw. Syst. Design
Implement. (NSDI), 2013, pp. 29–42.

[36] V. Bajpai and J. Schönwälder, “Network flow query language—Design,
implementation, performance, and applications,” IEEE Trans. Netw.
Service Manag., vol. 14, no. 1, pp. 8–21, Mar. 2017.

[37] A. G. Prieto and R. Stadler, “A-GAP: An adaptive protocol for contin-
uous network monitoring with accuracy objectives,” IEEE Trans. Netw.
Service Manag., vol. 4, no. 1, pp. 2–12, Jun. 2007.

[38] J. Shuyuan and D. S. Yeung, “A covariance analysis model for DDoS
attack detection,” in Proc. IEEE Int. Conf. Commun. (ICC), Paris,
France, 2004, pp. 1882–1886.

[39] V. Sekar, N. G. Duffield, O. Spatscheck, J. E. van der Merwe, and
H. Zhang, “LADS: Large-scale automated ddos detection system,” in
Proc. USENIX Annu. Techn. Conf. General Track, 2006, pp. 171–184.

[40] S. M. Mousavi and M. St-Hilaire, “Early detection of DDoS attacks
against SDN controllers,” in Proc. Int. Conf. Comput. Netw. Commun.
(ICNC), 2015, pp. 77–81.

[41] A. Metwally, D. Agrawal, and A. E. Abbadi, “Efficient computation
of frequent and top-k elements in data streams,” in Proc. Int. Conf.
Database Theory (ICDT), 2005, pp. 398–412.

[42] R. Schweller et al., “Reversible sketches: Enabling monitoring and
analysis over high-speed data streams,” IEEE/ACM Trans. Netw.,
vol. 15, no. 5, pp. 1059–1072, Oct. 2007.

[43] L. Tang, Q. Huang, and P. P. Lee, “MV-Sketch: A fast and compact
invertible sketch for heavy flow detection in network data streams,” in
Proc. IEEE INFOCOM Conf. Comput. Commun., Paris, France, 2019,
pp. 2026–2034.

[44] C. Graham and S. Muthukrishnan, “What’s new: Finding significant
differences in network data streams,” in Proc. IEEE INFOCOM 23rd
Annu. Joint Conf. Comput. Commun. Soc., Hong Kong, China, 2004,
pp. 1534–1545.

[45] P. Tammana, R. Agarwal, and M. Lee, “Simplifying datacenter network
debugging with pathdump,” in Proc. ACM 12th USENIX Conf. Oper.
Syst. Design Implement. (OSDI), 2016, pp. 233–248.

[46] P. Tammana, R. Agarwal, and M. Lee, “Distributed network monitoring
and debugging with switchpointer,” in Proc. 15th USENIX Conf. Netw.
Syst. Design Implement. (NSDI), 2018, pp. 453–466.

[47] B. Arzani et al., “007: Democratically finding the cause of packet
drops,” in Proc. 15th USENIX Conf. Netw. Syst. Design Implement.
(NSDI), 2018, pp. 419–435.

[48] Flowyager in Github. Accessed: Sep. 25, 2020. [Online]. Available:
https://github.com/saidjawad/Flowyager

[49] C. Labovitz, S. Lekel-Johnson, D. McPherson, J. Oberheide, and
F. Jahanian, “Internet inter-domain traffic,” in Proc. ACM SIGCOMM
Conf., 2010, pp. 75–86.

[50] R. Caceres et al., “Measurement and analysis of IP network usage
and behavior,” IEEE Commun. Mag., vol. 38, no. 5, pp. 144–151,
May 2000.

[51] Data Protection in the EU, The General Data Protection Regulation
(GDPR); Regulation (EU) 2016/679, Eur. Union, Brussels, Belgium,
2018. [Online]. Available: https://ec.europa.eu/info/law/law-topic/data-
protection/

[52] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann,
“OFRewind: Enabling record and replay troubleshooting for networks,”
in Proc. USENIX Conf. USENIX Annu. Techn. Conf. (Usenix ATC),
2011, p. 29.

[53] A. Wundsam, A. Mehmood, A. Feldmann, and O. Maennel, “Network
troubleshooting with mirror VNets,” in Proc. GLOBECOM Workshops,
Miami, FL, USA, 2010, pp. 283–287.

[54] R. Teixeira, R. Harrison, A. Gupta, and J. Rexford, “PacketScope:
Monitoring the packet lifecycle inside a switch,” in Proc. Symp. SDN
Res., 2020, pp. 76–82.

[55] M. Tirmazi, R. Ben Basat, J. Gao, and M. Yu, “Cheetah: Accelerating
database queries with switch pruning,” in Proc. ACM SIGMOD Int.
Conf. Manag. Data, 2020, pp. 2407–2422.

[56] D. Ding, M. Savi, G. Antichi, and D. Siracusa, “An incrementally-
deployable P4-enabled architecture for network-wide heavy-hitter
detection,” IEEE Trans. Netw. Service Manag., vol. 17, no. 1,
pp. 75–88, Mar. 2020.

[57] R. B. Basat, X. Chen, G. Einziger, and O. Rottenstreich, “Designing
heavy-hitter detection algorithms for programmable switches,”
IEEE/ACM Trans. Netw., vol. 28, no. 3, pp. 1172–1185, Jun. 2020.

[58] S. Pontarelli et al., “Flowblaze: Stateful packet processing in hard-
ware,” in Proc. 16th USENIX Conf. Netw. Syst. Design Implement.
(NSDI), 2019, pp. 531–547.

[59] M. Zhang et al., “Poseidon: Mitigating volumetric ddos attacks with
programmable switches,” in Proc. 27th Annu. Netw. Distrib. Syst.
Security Symp. (NDSS), 2020.

[60] M. Yu, “Network telemetry: Towards a top-down approach,” ACM
Comput. Commun. Rev., vol. 49, no. 1, pp. 11–17, 2019.

[61] Y. Lee and Y. Lee, “Toward scalable Internet traffic measurement and
analysis with hadoop,” ACM Comput. Commun. Rev., vol. 43, no. 1,
pp. 5–13, 2013.

[62] Clickhouse—Open Source Distributed Column-Oriented
DBMS, Yandex, Moscow, Russia, 2018. [Online]. Available:
https://clickhouse.yandex/

[63] A. Vulimiri, C. Curino, B. Godfrey, T. Jungblut, J. Padhye, and
G. Varghese, “Global analytics in the face of bandwidth and regu-
latory constraints,” in Proc. 12th USENIX Conf. Netw. Syst. Design
Implement. (NSDI), 2015, pp. 323–336.

[64] A. Vulimir, C. Curino, B. Godfrey, K. Karanasos, and G. Varghese,
“WANalytics: Analytics for a geo-distributed data-intensive world,” in
Proc. 7th Biennial Conf. Innovat. Data Syst. Res. Asilomar (CIDR),
2015, pp. 1–9.

[65] R. Viswanathan, G. Ananthanarayanan, and A. Akella, “CLARINET:
WAN-Aware optimization for analytics queries,” in Proc. 12th USENIX
Conf. Oper. Syst. Design Implement. (NSDI), 2016, pp. 435–450.

[66] K. Hsieh et al., “Gaia: Geo-distributed machine learning approach-
ing LAN speeds,” in Proc. 14th USENIX Conf. Netw. Syst. Design
Implement. (NSDI), 2017, pp. 629–647.

[67] Y. Huang et al., “Yugong: Geo-distributed data and job placement at
scale,” Proc. VLDB Endowm., vol. 12, no. 12, pp. 2155–2169, 2019.

[68] A. D’Alconzo, I. Drago, A. Morichetta, M. Mellia, and P. Casas, “A
survey on big data for network traffic monitoring and analysis,” IEEE
Trans. Netw. Service Manag., vol. 16, no. 3, pp. 800–813, Sep. 2019.

[69] R. B. Basat, X. Chen, G. Einziger, R. Friedman, and Y. Kassner,
“Randomized admission policy for efficient top-k, frequency, and
volume estimation,” IEEE/ACM Trans. Netw., vol. 27, no. 4,
pp. 1432–1445, Aug. 2019.

[70] R. Harrison, S. L. Feibish, A. Gupta, R. Teixeira, S. Muthukrishnan,
and J. Rexford, “Carpe elephants: Seize the global heavy hitters,” in
Proc. Workshop Secure Program. Netw. Infrastruct., 2020, pp. 15–21.

[71] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, “Diamond
in the rough: Finding hierarchical heavy hitters in multi-dimensional
data,” in Proc. ACM SIGMOD Int. Conf. Manag. Data, 2004,
pp. 155–166.

[72] M. Mitzenmacher, T. Steinke, and J. Thaler, “Hierarchical heavy hitters
with the space saving algorithm,” in Proc. Meeting Algorithm Eng. Exp.
(ALENEX), 2012, pp. 160–174.

[73] G. Cormode and S. Muthukrishnan, “What’s new: Finding significant
differences in network data streams,” IEEE/ACM Trans. Netw., vol. 13,
no. 6, pp. 1219–1232, Dec. 2005.

[74] N. Ivkin, R. B. Basat, Z. Liu, G. Einziger, R. Friedman, and
V. Braverman, “I know what you did last summer: Network moni-
toring using interval queries,” Proc. ACM Meas. Anal. Comput. Syst.,
vol. 3, no. 3, p. 61, 2019.

[75] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
UnivMon,” in Proc. ACM SIGCOMM Conf., 2016, pp. 101–114.

[76] T. Wellem, Y.-K. Lai, C.-Y. Huang, and W.-Y. Chung, “A flexible
sketch-based network traffic monitoring infrastructure,” IEEE Access,
vol. 7, pp. 92476–92498, 2019.

[77] H. Wang, H. Xu, L. Huang, and Y. Zhai, “Fast and accurate traffic
measurement with hierarchical filtering,” IEEE Trans. Parallel Distrib.
Syst., vol. 31, no. 10, pp. 2360–2374, Oct. 2020.

[78] T. Repantis, J. Cohen, S. Smith, and J. Wein, “Scaling a Monitoring
Infrastructure for the Akamai network,” SIGOPS Oper. Syst. Rev.,
vol. 44, no. 3, pp. 20–26, 2010.

[79] J. Cohen, T. Repantis, S. McDermott, S. Smith, and J. Wein, “Keeping
track of 70,000+ Servers: The Akamai query system,” in Proc. 24th Int.
Conf. Large Installation Syst. Admin. (USENIX LISA), 2010, pp. 1–13.

[80] J. Wallerich, H. Dreger, A. Feldmann, B. Krishnamurthy, and
W. Willinger, “A methodology for studying persistency aspects of
Internet flows,” ACM Comput. Commun. Rev., vol. 35, no. 2, pp. 23–36,
Apr. 2005.

[81] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the characteris-
tics and origins of Internet flow rates,” ACM Comput. Commun. Rev.,
vol. 32, no. 4, pp. 309–322, 2002.

Authorized licensed use limited to: Max-Planck-Institut fuer Informatik    . Downloaded on October 07,2022 at 10:35:38 UTC from IEEE Xplore.  Restrictions apply. 



2006 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 17, NO. 4, DECEMBER 2020

[82] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and Zipf-like distributions: Evidence and implications,” in Proc. IEEE
INFOCOM Conf. Comput. Commun. 18th Annu. Joint Conf. Comput.
Commun. Soc., New York, NY, USA, 1999, pp. 126–134.

[83] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava, “Finding
hierarchical heavy hitters in streaming data,” ACM Trans. Knowl.
Discov. Data, vol. 1, no. 4, p. 2, 2008.

[84] (2019). mongoDB: The Database for Modern Applications. [Online].
Available: https://www.mongodb.com/

[85] (2019). Apache Thrift. [Online]. Available: https://thrift.apache.org/
[86] (2019). ANTLR (ANother Tool for Language Recognition). [Online].

Available: https://www.antlr.org/
[87] Easy Web Applications in R, RStudio, Inc, Boston, MA, USA, 2013.

[Online]. Available: http://www.rstudio.com/shiny/
[88] (2018). MAWI Working Group Traffic Archive. [Online]. Available:

http://mawi.wide.ad.jp/mawi/
[89] B. B. Ran. (2018). Implementation of the Constant Time Updates in

Hierarchical Heavy Hitters Paper, ACM SIGCOMM 2017. [Online].
Available: https://github.com/ranbenbasat/RHHH

[90] The CAIDA UCSD Passive Monitor: Equinix-Chicago—2016-02-
18, CAIDA, La Jolla, CA, USA, 2018. [Online]. Available:
https://www.caida.org/data/monitors/passive-equinix-chicago.xml

[91] S. T. Zargar, J. Joshi, and D. Tipper, “A survey of defense mechanisms
against distributed denial of service (DDoS) flooding attacks,” IEEE
Commun. Surveys Tuts., vol. 15, no. 4, pp. 2046–2069, 4th Quart.,
2013.

[92] G. Carl, G. Kesidis, R. R. Brooks, and S. Rai, “Denial-of-service
attack-detection techniques,” IEEE Internet Comput., vol. 10, no. 1,
pp. 82–89, Jan./Feb. 2006.

[93] C. Douligeris and A. Mitrokotsa, “DDoS attacks and defense mech-
anisms: Classification and state-of-the-art,” Comput. Netw., vol. 44,
no. 5, pp. 643–666, 2004.

[94] K. Lee, J. Kim, K. H. Kwon, Y. Han, and S. Kim, “DDoS attack
detection method using cluster analysis,” Expert Syst. Appl., vol. 34,
no. 3, pp. 1659–1665, 2008.

[95] J. Czyz, M. Kallitsis, M. Gharaibeh, C. Papadopoulos, M. Bailey, and
M. Karir, “Taming the 800 Pound Gorilla: The rise and decline of
NTP DDoS attacks,” in Proc. ACM Int. Meas. Conf. (IMC), 2014,
pp. 435–448.

[96] M. Jonker, A. King, J. Krupp, C. Rossow, A. Sperotto, and A. Dainotti,
“Millions of targets under attack: A macroscopic characterization of
the DoS ecosystem,” in Proc. ACM Int. Meas. Conf. (IMC), 2017,
pp. 100–113.

[97] C. Dietzel, G. Smaragdakis, M. Wichtlhuber, and A. Feldmann,
“Stellar: Network attack mitigation using advanced blackholing,” in
Proc. ACM 14th Int. Conf. Emerg. Netw. EXp. Technol. (CoNEXT),
2018, pp. 152–164.

[98] M. Jonker, A. Sperotto, R. van Rijswijk-Deij, R. Sadre, and A. Pras,
“Measuring the adoption of DDoS protection services,” in Proc. ACM
Int. Meas. Conf. (IMC), 2016, pp. 279–285.

[99] (2019). US-Cert: Alert (TA14-017A). UDP-Based Amplification
Attacks. [Online]. Available: https://www.us-cert.gov/ncas/alerts/TA14-
017A

[100] State of the Internet Security Report (Attack Spotlight: Memcached),
Akamai, Cambridge, MA, USA, 2018. [Online]. Available:
https://www.akamai.com/us/en/multimedia/documents/state-of-the-
internet/soti-summer-2018-attack-spotlight.pdf

[101] C. Rossow, “Amplification hell: Revisiting network protocols for DDoS
abuse,” in Proc. 21st Annu. Netw. Distrib. Syst. Security Symp. (NDSS),
2014.

Said Jawad Saidi received the M.Sc. degree in com-
puter science from Technische Universität Berlin in
2016. He is currently pursuing the Ph.D. degree
with the Internet Architecture Research Group led
by Prof. Anja Feldmann, Max Planck Institute for
Informatics, Saarbrücken, Germany. His research
area involves Internet of Things, Internet measure-
ment as well as design and study of systems and
measurement methodologies to enhance the observ-
ability of Internet.

Aniss Maghsoudlou is currently pursuing the Ph.D.
degree with the Internet Architecture Research
Group, Max Planck Institute for Informatics,
Germany. She has also worked with Software-
defined WLANs as her master’s thesis at Sharif
University of Technology, Iran. She has been work-
ing with several projects on network measurement,
to investigate how Internet traffic really looks like
and to simplify management of the large scale traffic
in ISPs and IXPs.

Damien Foucard received the master’s Diploma
degree in engineering from Centrale-Supelec,
France, and the master’s Diploma degree in com-
puter science from TU Berlin, Germany, in 2015,
where he is currently pursuing the Ph.D. degree with
the Open Distributed Systems Research Group, led
by Prof. Manfred Hauswirth. From 2015 to 2018,
he was a Ph.D. student with the Intelligent Network
Research Group, led by Prof. Anja Feldmann, dur-
ing which he collaborated with EPFL, Switzerland,
in 2016. As a Teaching Assistant, he gives lectures

for classes of up to thousand students. He also supervised successfully dozens
of theses and projects. His research centers around online optimization of data
structures by combining machine learning and statistical guarantees.

Georgios Smaragdakis received the Diploma
degree in electronic and computer engineering
from the Technical University of Crete and the
Ph.D. degree in computer science from Boston
University in 2009. He is currently a Professor
with Technical University (TU) Berlin, heading the
Chair of Internet Measurement and Analysis. He is
also a Research Affiliate with Max Planck Institute
for Informatics and a Research Collaborator with
Akamai Technologies. From 2014 to 2017, he was a
Marie Curie Fellow with the Massachusetts Institute

of Technology (MIT) Computer Science and Artificial Intelligent Laboratory,
and from 2015 to 2018, he was a Research Affiliate with the MIT Internet
Policy Research Initiative. From 2008 to 2014, he acted as a Senior Researcher
with Deutsche Telekom Laboratories and TU Berlin. In 2008, he was a
Research Intern with Telefonica Research. His research brings a data- and
measurement-driven approach to the study of the Internet’s state, resilience,
and performance, as well as to the enhancement of Web privacy. His research
was recognized with a European Research Council Starting Grant Award in
2015, a Marie Curie International Outgoing Fellowship in 2013, Best Paper
Awards at ACM Internet Measurement Conference in 2011, 2016, and 2018,
ACM CoNEXT in 2015 and 2019, IEEE INFOCOM in 2017, two IETF/IRTF
Applied Networking Research Prizes in 2019 and 2020, and was selected as
best of ACM SIGCOMM Computer Communication Review in 2019.

Ingmar Poese received the M.Sc. and Ph.D. degrees from Technische
Universität Berlin in 2009 and 2013, respectively. He is the Co-Founder and
CTO of BENOCS. He focuses his work on large scale networks, system
design, Internet measurement, and data analytics.

Anja Feldmann received the master’s degree from Universität Paderborn,
Germany, and the Ph.D. degree from Carnegie Mellon University. She did
research work with AT&T Labs Research, for four years, before taking
Professor positions with Saarland University, the TU Munich, and the TU
Berlin. Since 2018, she has been the Director of the Max Planck Institute
for Informatics, Saarbrücken, Germany. Her current research interests include
Internet measurement, traffic engineering and traffic characterization, network
performance debugging, and network architecture. She was a Co-Chair of
ACM SIGCOMM in 2003 and ACM IMC in 2011, and a Co-PC-Chair of
ACM CoNext in 2020, ACM SIGCOMM in 2007, ACM IMC in 2009, and
ACM HotNets in 2014.

Authorized licensed use limited to: Max-Planck-Institut fuer Informatik    . Downloaded on October 07,2022 at 10:35:38 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


